Плазменное напыление или плазменная металлизация
Процесс плазменного напыления обеспечивает: защиту изделия от воздействия окислительной среды и механических нагрузок, обеспечивает антикоррозионную защиту, защиту от воздействия агрессивных сред, и упрочнения поверхностей деталей. Плазменное напыление покрытий — это метод, при котором частицы металлического порошка разгоняются высокотемпературными потоками плазмы и осаждаются на основе в виде покрытия, металлизации. плазменное напыление основано на распылении двух проволок, между которыми горит электрическая дуга и сжатый воздух подается в область энерговыделения. Имеется установка плазменного напыления алюминием или цинком различных поверхностей,
Установка включает металлизатор ЭМ-14м, источник питания ВДУ-506, рабочий ток дуги устанавливается в диапазоне 100 — 500 А, блок подачи проволоки (БПП-2) с креплением катушек и с устройством ввода их в металлизатор, компрессор с давлением 6 — 8 атм. и расходом воздуха не менее 1 куб.м в мин. На Воткинской ГЭС способ плазменного напыления алюминием используется в защите от коррозии шандор водосливной плотины, лопастей турбин. Чайковский судоходный шлюз использует плазменное напыление алюминием или цинком при ремонте металлических створок шлюза. Можно металлизировать баки, емкости и другие детали.
Технология напыления (металлизации) включает различные этапы:
- подготовка поверхности под металлизацию должна производиться сухим песком или дробью (без загрязнений), шероховатость поверхности должна быть не менее 100 мкм;
- металлизация поверхности должна производиться перекрестным методом с толщиной покрытия не менее 200 мкм в зависимости от срока службы;
- изделия со сроком службы 50 лет и более должно наноситься покрытие толщиной не менее 300 мкм;
- окончательная толщина покрытия должна выдерживать существующие воздействие промышленной среды.
Способ импульсной микроплазменной обработки разработан для получения защитных и упрочняющих слоев на локальных областях. Сущность импульсной микроплазменной обработки сводится к следующему. Нагрев и плавление металла осуществляются в течение импульса тока длительностью t и дугой прямой полярности. Одновременно вводятся легирующие элементы, которые также плавятся и перемешиваются с основным металлом. В промежуток времени между импульсами, т.е. во время паузы t п, ванночка жидкого металла кристаллизуется и формируется новое соединение, содержащее легирующие элементы. Процесс внедрения продолжается за счет градиента концентрации внедряемых частиц и термодиффузии. Таким образом, формируемый слой образован из непроплавленного и частично переплавленного металла. Регулируя параметры импульса (амплитуду и длительность), частоту следования импульсов, можно контролировать процесс импульсной микроплазменной обработки, достичь оптимальных результатов. Импульсная микроплазменная обработка позволяет получать качественные равномерные слои по глубине расплава и концентрации внедряемых частиц. Она позволяет получать качественные слои на металлических поверхностях, содержащих легко испаряющиеся химические элементы, термическая обработка которых дугой постоянного тока сопровождается значительными трудностями.
- Процесс импульсной микроплазменной обработки металлов позволили рекомендовать этот источник нагрева для получения защитных и упрочняющих слоев на тонких поверхностях с малыми рабочими токами. Питание дуги импульсами тока дает возможность уменьшить средний сварочный ток и сохранять высокую плотность (до 50 А/мм2) в течение всего импульса. Выбором параметров импульсного режима можно регулировать в широком диапазоне средний ток (3 — 50 А) и мощность (0,1 — 2,5 кВт) дуги атмосферного давления. На Воткинской ГЭС планируется приобрести установку для импульсной микроплазменной обработки.
Существуют случаи, когда приходится учитывать плазму, как явление, которого нужно избежать. Это возникновение плазменной дуги при коммутационных и переходных процессах. Например, при отключении линии электропередачи в выключателе между контактами возникает дуга, которая должна быть погашена как можно быстрее. Для гашения дуги используют коммутационные аппараты — выключатели воздушные, масляные, вакуумные, элегазовые.